Affiliation:
1. University of Wyoming, Department of Geology and Geophysics, 1000 E University Ave, Laramie, Wyoming 82071, USA.(corresponding author); .
Abstract
We have developed a time-lapse seismic history matching framework to assimilate production data and time-lapse seismic data for the prediction of static reservoir models. An iterative data assimilation method, the ensemble smoother with multiple data assimilation is adopted to iteratively update an ensemble of reservoir models until their predicted observations match the actual production and seismic measurements and to quantify the model uncertainty of the posterior reservoir models. To address computational and numerical challenges when applying ensemble-based optimization methods on large seismic data volumes, we develop a deep representation learning method, namely, the deep convolutional autoencoder. Such a method is used to reduce the data dimensionality by sparsely and approximately representing the seismic data with a set of hidden features to capture the nonlinear and spatial correlations in the data space. Instead of using the entire seismic data set, which would require an extremely large number of models, the ensemble of reservoir models is iteratively updated by conditioning the reservoir realizations on the production data and the low-dimensional hidden features extracted from the seismic measurements. We test our methodology on two synthetic data sets: a simplified 2D reservoir used for method validation and a 3D application with multiple channelized reservoirs. The results indicate that the deep convolutional autoencoder is extremely efficient in sparsely representing the seismic data and that the reservoir models can be accurately updated according to production data and the reparameterized time-lapse seismic data.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献