Time-lapse seismic history matching with an iterative ensemble smoother and deep convolutional autoencoder

Author:

Liu Mingliang1ORCID,Grana Dario1ORCID

Affiliation:

1. University of Wyoming, Department of Geology and Geophysics, 1000 E University Ave, Laramie, Wyoming 82071, USA.(corresponding author); .

Abstract

We have developed a time-lapse seismic history matching framework to assimilate production data and time-lapse seismic data for the prediction of static reservoir models. An iterative data assimilation method, the ensemble smoother with multiple data assimilation is adopted to iteratively update an ensemble of reservoir models until their predicted observations match the actual production and seismic measurements and to quantify the model uncertainty of the posterior reservoir models. To address computational and numerical challenges when applying ensemble-based optimization methods on large seismic data volumes, we develop a deep representation learning method, namely, the deep convolutional autoencoder. Such a method is used to reduce the data dimensionality by sparsely and approximately representing the seismic data with a set of hidden features to capture the nonlinear and spatial correlations in the data space. Instead of using the entire seismic data set, which would require an extremely large number of models, the ensemble of reservoir models is iteratively updated by conditioning the reservoir realizations on the production data and the low-dimensional hidden features extracted from the seismic measurements. We test our methodology on two synthetic data sets: a simplified 2D reservoir used for method validation and a 3D application with multiple channelized reservoirs. The results indicate that the deep convolutional autoencoder is extremely efficient in sparsely representing the seismic data and that the reservoir models can be accurately updated according to production data and the reparameterized time-lapse seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3