Elastic properties as indicators of heat flux into cold near-surface Arctic sediments

Author:

Stemland Helene Meling1ORCID,Johansen Tor Arne2ORCID,Ruud Bent Ole1,Mavko Gary3ORCID

Affiliation:

1. University of Bergen, Department of Earth Science, PO Box 7803, 5020 Bergen, Norway and ARCEx, UiT The Arctic University of Norway, PO Box 6050 Langnes, 9037 Tromsø, Norway.(corresponding author); .

2. University of Bergen, Department of Earth Science, PO Box 7803, 5020 Bergen, Norway, The University Centre in Svalbard (UNIS), PO Box 156, 9171 Longyearbyen, Norway and ARCEx, UiT The Arctic University of Norway, PO Box 6050 Langnes, 9037 Tromsø, Norway..

3. Stanford University, Department of Geophysics, 397 Panama Mall Mitchell Building, Stanford, California 94305-2215, USA..

Abstract

Temperatures in the terrestrial Arctic today are increasing at the highest rate on earth, and heat flux into the cold sediments may result in extensive thawing. Thawing sediments lose their mechanical strength; therefore, warming has significant geomorphic consequences. We have combined heat flux, rock physics, and seismic modeling to estimate the change in elastic properties related to various published future climate scenarios in the Arctic, and we thus investigate the feasibility of exposing thawing rates from seismic data. The heat-flux model was validated using temperature data continuously recorded at the surface and within a well in Adventdalen, Svalbard. We estimated the evolving temperatures in an upper vertical section of the well using the heat-flux model, and we compared them with actual measured well temperatures. The modeled and measured data were consistent, even though our simplified model ignores heat transport due to fluid flow and the effects of clay. The heat-flux modeling resulted in subsurface isotherms that were input to rock-physics modeling based on two-end-member mixing of fully frozen and unfrozen composites to delineate possible climate effects on the seismic properties of the sediments. The results show that the elastic and seismic properties of (partly) frozen unconsolidated near-surface saline sediments strongly depend on heat flux into the subsurface, and they vary seasonally and between different climate scenarios. Seismic data obtained by full-waveform modeling and real experiments in Adventdalen show that time-lapse analysis of Rayleigh waves may be an efficient tool for monitoring heat flux into the terrestrial Arctic.

Funder

Norges Forskningsråd

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3