The velocity-stress finite-difference method with a rotated staggered grid applied to seismic wave propagation in a fractured medium

Author:

Wang Kang1ORCID,Peng Suping1ORCID,Lu Yongxu1ORCID,Cui Xiaoqin1ORCID

Affiliation:

1. China University of Mining & Technology (Beijing), State Key Laboratory of Coal Resources and Safe Mining, Beijing 100083, China..

Abstract

To enable a mathematical description, geologic fractures are considered as infinitely thin planes embedded in a homogeneous medium. These fracture structures satisfy linear slip boundary conditions, namely, a discontinuous displacement and continuous stress. The general finite-difference (FD) method described by the elastic wave equations has challenges when attempting to simulate the propagation of waves at the fracture interface. The FD method expressed by velocity-stress variables with the explicit application of boundary conditions at the fracture interface facilitates the simulation of wave propagation in fractured discontinuous media that are described by elastic wave equations and linear slip interface conditions. We have developed a new FD scheme for horizontal and vertical fracture media. In this scheme, a fictitious grid is introduced to describe the discontinuous velocity at the fracture interface and a rotated staggered grid is used to accurately indicate the location of the fracture. The new FD scheme satisfies nonwelded contact boundary conditions, unlike traditional approaches. Numerical simulations in different fracture media indicate that our scheme is accurate. The results demonstrate that the reflection coefficient of the fractured interface varies with the incident angle, wavelet frequency, and normal and tangential fracture compliances. Our scheme and conclusions from this study will be useful in assessing the properties of fractures, enabling the proper delineation of fractured reservoirs.

Funder

National Science and Technology Major Project

111 Project

Open Fund of State Key Laboratory of Water Resource Protection Utilization in Coal Mining

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3