Helicopter-borne ground-penetrating radar investigations on temperate alpine glaciers: A comparison of different systems and their abilities for bedrock mapping

Author:

Rutishauser Anja1,Maurer Hansruedi2,Bauder Andreas3

Affiliation:

1. University of Alberta, Department of Earth and Atmospheric Sciences, Edmonton, Alberta, Canada..

2. ETH Zurich, Institute of Geophysics, Zurich, Switzerland..

3. ETH Zurich, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), Zurich, Switzerland..

Abstract

On the basis of a large data set, comprising approximately 1200 km of profile lines acquired with different helicopter-borne ground-penetrating radar (GPR) systems over temperate glaciers in the western Swiss Alps, we have analyzed the possibilities and limitations of using helicopter-borne GPR surveying to map the ice-bedrock interface. We have considered data from three different acquisition systems including (1) a low-frequency pulsed system hanging below the helicopter (BGR), (2) a stepped frequency system hanging below the helicopter (Radar Systemtechnik GmbH [RST]), and (3) a commercial system mounted directly on the helicopter skids (Geophysical Survey Systems Incorporated [GSSI]). The systems showed considerable differences in their performance. The best results were achieved with the BGR system. On average, the RST and GSSI systems yielded comparable results, but we observed significant site-specific differences. A comparison with ground-based GPR data found that the quality of helicopter-borne data is inferior, but the compelling advantages of airborne surveying still make helicopter-borne data acquisition an attractive option. Statistical analyses concerning the bedrock detectability revealed not only large differences between the different acquisition systems but also between different regions within our investigation area. The percentage of bedrock reflections identified (with respect to the overall profile length within a particular region) varied from 11.7% to 68.9%. Obvious factors for missing the bedrock reflections included large bedrock depths and steeply dipping bedrock interfaces, but we also observed that internal features within the ice body may obscure bedrock reflections. In particular, we identified a conspicuous “internal reflection band” in many profiles acquired with the GSSI system. We attribute this feature to abrupt changes of the water content within the ice, but more research is required for a better understanding of the nature of this internal reflection band.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3