Affiliation:
1. China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Lab of Geophysical Exploration, Beijing, China..
Abstract
Recently, a decoupled fractional Laplacian viscoacoustic wave equation has been developed based on the constant-[Formula: see text] model to describe wave propagation in heterogeneous media. We have developed two efficient modeling schemes to solve the decoupled fractional Laplacian viscoacoustic wave equation. Both schemes can cope with spatial variable-order fractional Laplacians conveniently, and thus are applicable for modeling viscoacoustic wave propagation in heterogeneous media. Both schemes are based on fast Fourier transform, and have a spectral accuracy in space. The first scheme solves a modified wave equation with constant-order fractional Laplacians instead of spatial variable-order fractional Laplacians. Due to separate discretization of space and time, the first scheme has only first-order accuracy in time. Differently, the second scheme is based on an analytical wave propagator, and has a higher accuracy in time. To increase computational efficiency of the second modeling scheme, we have adopted the low-rank decomposition in heterogeneous media. We also evaluated the feasibility of applying an empirical approximation to approximate the fractional Laplacian that controls amplitude loss during wave propagation. When the empirical approximation is applied, our two modeling schemes become more efficient. With the help of numerical examples, we have verified the accuracy of our two modeling schemes with and without applying the empirical approximation, for a wide range of seismic quality factor ([Formula: see text]). We also compared computational efficiency of our two modeling schemes using numerical tests.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献