The impact of pore-scale magnetic field inhomogeneity on the shape of the nuclear magnetic resonance relaxation time distribution

Author:

Grombacher Denys1,Fay Emily1,Nordin Matias1ORCID,Knight Rosemary1

Affiliation:

1. Stanford University, Department of Geophysics, Stanford, California, USA..

Abstract

Measurements of the nuclear magnetic resonance (NMR) signal’s behavior with time provide powerful noninvasive insight into the pore-scale environment. The time dependence of the NMR signal, which is a function of parameters called relaxation times, is intimately linked to the geometry of the pore space and has been used successfully to estimate pore size and permeability. The basis for the pore size and permeability estimates is that interactions occurring at the grain surface often function as the primary mechanism controlling the time dependence of the NMR signal. In this limit, called the fast diffusion limit, and when each pore can be considered to be isolated, the measured relaxation times are often interpreted as representative of pore sizes. In heterogeneous media, where the NMR signal is described by a distribution of relaxation times, the measured relaxation time distribution is often interpreted as representative of the underlying pore-size distribution. We have explored a scenario in which an additional relaxation mechanism, which arises due to magnetic field inhomogeneity across the pore space, violates the assumption that interactions occurring at the grain surface are the dominant relaxation mechanism. Using both synthetic and laboratory studies, we demonstrate that magnetic field inhomogeneity can lead to a complex relationship between the measured relaxation time distribution and the underlying pore-size distribution. Magnetic field inhomogeneity is observed to lead to a spatially heterogeneous magnetization density across the pore space requiring multiple eigenmodes to describe the evolution of the magnetization within a single pore during the NMR experiment. This results in a breakdown of the validity of the interpretation of the relaxation time distribution as representative of the underlying pore-size distribution for sediments with high magnetic susceptibility.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3