Accelerating extended least-squares migration with weighted conjugate gradient iteration

Author:

Hou Jie1,Symes William W.1

Affiliation:

1. Rice University, The Rice Inversion Project, Houston, Texas, USA..

Abstract

Least-squares migration (LSM) iteratively achieves a mean-square best fit to seismic reflection data, provided that a kinematically accurate velocity model is available. The subsurface offset extension adds extra degrees of freedom to the model, thereby allowing LSM to fit the data even in the event of significant velocity error. This type of extension also implies additional computational expense per iteration from crosscorrelating source and receiver wavefields over the subsurface offset, and therefore places a premium on rapid convergence. We have accelerated the convergence of extended least-squares migration by combining the conjugate gradient algorithm with weighted norms in range (data) and domain (model) spaces that render the extended Born modeling operator approximately unitary. We have developed numerical examples that demonstrate that the proposed algorithm dramatically reduces the number of iterations required to achieve a given level of fit or gradient reduction compared with conjugate gradient iteration with Euclidean (unweighted) norms.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3