On smoke rings produced by a loop buried in a conductive half-space

Author:

Swidinsky Andrei1,Nabighian Misac1

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA..

Abstract

The transient electromagnetic (TEM) response of a wire loop at the surface of the earth has been studied in detail for several decades. When current in the loop is rapidly switched off, an identical system of current, commonly referred to as a “smoke ring,” is induced in the conductive subsurface and diffuses downward and outward into the earth. What has not been studied as thoroughly is the response of a loop buried within a conductive medium, as might be the case in the marine environment or when TEM prospecting systems are placed in mine tunnels or horizontal boreholes. We have examined the TEM response of a horizontal wire loop buried within a conductive half-space. Expressions were derived for the azimuthal electric field and corresponding vertical and radial magnetic fields. Our results showed that when the loop is far from the earth-air interface, a single smoke ring system diffuses radially outward from the transmitter, while the electric field and corresponding current density decays away in the vertical direction. As the loop approaches the interface, the smoke ring system diffuses radially at early times, but gradually, the complex image of the loop in the air produces a system of secondary azimuthal electric fields, which, when combined with the primary field, adds a vertical component to the field diffusion. At late times, the field behavior reduces to the well-known surface case and the maximum current system diffuses downward at a constant angle of 26° with respect to the plane of the loop. We concluded that it was the effect of the interface that produces the downward migration of a smoke ring system, whereas the outward migration is mainly generated by the primary field.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3