Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition

Author:

Nazari Siahsar Mohammad Amir1,Gholtashi Saman2,Kahoo Amin Roshandel2,Marvi Hosein1,Ahmadifard Alireza1

Affiliation:

1. Shahrood University of Technology, School of Electrical and Robotic Engineering, Shahrood, Iran..

2. Shahrood University of Technology, School of Mining, Petroleum and Geophysics Engineering, Shahrood, Iran..

Abstract

Attenuation of random noise is a major concern in seismic data processing. This kind of noise is usually characterized by random oscillation in seismic data over the entire time and frequency. We introduced and evaluated a low-rank and sparse decomposition-based method for seismic random noise attenuation. The proposed method, which is a trace by trace algorithm, starts by transforming the seismic signal into a new sparse subspace using the synchrosqueezing transform. Then, the sparse time-frequency representation (TFR) matrix is decomposed into two parts: (a) a low-rank component and (b) a sparse component using bilateral random projection. Although seismic data are not exactly low-rank in the sparse TFR domain, they can be assumed as being of semi-low-rank or approximately low-rank type. Hence, we can recover the denoised seismic signal by minimizing the mixed [Formula: see text] norms’ objective function by considering the intrinsically semilow-rank property of the seismic data and sparsity feature of random noise in the sparse TFR domain. The proposed method was tested on synthetic and real data. In the synthetic case, the data were contaminated by random noise. Denoising was carried out by means of the [Formula: see text] classical singular spectrum analysis (SSA) and [Formula: see text] deconvolution method for comparison. The [Formula: see text] deconvolution and the classical [Formula: see text] SSA method failed to properly reduce the noise and to recover the desired signal. We have also tested the proposed method on a prestack real data set from an oil field in the southwest of Iran. Through synthetic and real tests, the proposed method is determined to be an effective, amplitude preserving, and robust tool that gives superior results over classical [Formula: see text] SSA as conventional algorithm for denoising seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3