A geometric optics model for high‐frequency electromagnetic scattering from dielectric cylinders

Author:

Baumgartner François1,Munk Jens2,Daniels Jeffrey2

Affiliation:

1. Technical University of Denmark, Department of Geology and Geotechnical Engineering, Building 204, 2800 Lyngby, Denmark

2. The Ohio State University, Department of Geological Sciences, Columbus, Ohio 43210

Abstract

The cylinder is a fundamental shape for (2‐D) geophysical modeling, and cylindrical objects (e.g., pipes) are a common target for ground penetrating radar. This paper presents physical and theoretical model responses for a cylinder which provide insight into responses that can be anticipated in field data. We calculate the exact expressions for the scattered field components of an obliquely incident plane wave over an infinitely long homogeneous dielectric cylinder and express them in the time domain. We project the field on a horizontal plane over the dielectric cylinder and interpret them for a large range of permittivity contrasts. The high‐frequency approximation presented in this paper includes the processes of specular reflection and critical refraction, which satisfy Snell’s law. Assuming the velocity of the surface waves is equal to the velocity of the fastest medium, and assuming their travel path is the shortest one possible, we derive a geometric optics model which is valid over a wide range of permittivities. We show that the critically refracted response can be separated and measured from the specular reflections in the received signal. The identification and isolation of these different responses of the bistatic measurements enable a characterization of the target’s properties, such as its size, orientation, and formation. We confirm our theoretical results by comparison with measurements using a physical model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference11 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3