P-wave attenuation measurements from laboratory resonance and sonic waveform data

Author:

Goldberg D.1,Zinszner B.2

Affiliation:

1. Lamont‐Doherty Geological Observatory of Columbia University, Palisades, New York 10964

2. Rock Physics Laboratory, Institut Français du Pétrole, 92506 Rueil‐Malmaison, France

Abstract

We computed compressional‐wave velocity [Formula: see text] and attenuation [Formula: see text] from sonic log waveforms recorded in a cored, 30 m thick, dolostone reservoir; using cores from the same reservoir, laboratory measurements of [Formula: see text] and [Formula: see text] were also obtained. We used a resonant bar technique to measure extensional and shear‐wave velocities and attenuations in the laboratory, so that the same frequency range as used in sonic logging (5–25 kHz) was studied. Having the same frequency range avoids frequency‐dependent differences between the laboratory and in‐situ measurements. Compressional‐wave attenuations at 0 MPa confining pressure, calculated on 30 samples, gave average [Formula: see text] values of 17. Experimental and geometrical errors were estimated to be about 5 percent. Measurements at elevated effective pressures up to 30 MPa on selected dolostone samples in a homogeneous interval showed mean [Formula: see text] and [Formula: see text] to be approximately equal and consistently greater than 125. At effective stress of 20 MPa and at room temperature, the mean [Formula: see text] over the dolostone interval was 87, a minimum estimate for the approximate in‐situ conditions. We computed compressional‐wave attenuation from sonic log waveforms in the 12.5–25 kHz frequency band using the slope of the spectral ratio of waveforms recorded 0.914 m and 1.524 m from the source. Average [Formula: see text] over the interval was 13.5, and the mean error between this value and the 95 percent confidence interval of the slope was 15.9 percent. The laboratory measurements of [Formula: see text] under elevated pressure conditions were more than five times greater than the mean in‐situ values. This comparison shows that additional extrinsic losses in the log‐derived measurement of [Formula: see text], such as scattering from fine layers and vugs or mode conversion to shear energy dissipating radially from the borehole, dominate the apparent attenuation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental study of seismic dispersion: influence of clay mineral content;Geophysical Journal International;2023-12-30

2. Geometrical attenuation, frequency dependence ofQ, and the absorption band problem;Geophysical Journal International;2008-10

3. Nonlinear amplitude–frequency characteristics of attenuation in rock under pressure;Journal of Geophysics and Engineering;2006-09-20

4. Numerical modeling of weak sand behavior;Numerical Modeling in Micromechanics via Particle Methods - 2004;2004-09-15

5. Least‐squares inversion of in‐situ sonicQmeasurements: Stability and resolution;GEOPHYSICS;2004-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3