Evaluation of the BGM-3 sea gravity meter system onboard R/V Conrad

Author:

Bell Robin E.1,Watts A. B.1

Affiliation:

1. Lamont‐Doherty Geological Observatory, and Department of Geological Sciences, Columbia University, Palisades, NY 10964

Abstract

The first Bell Aerospace BGM-3 Marine Gravity Meter System available for academic use was installed on R/V Robert D. Conrad in February, 1984. The BGM-3 system consists of a forced feedback accelerometer mounted on a gyrostabilized platform. Its sensor (requiring no cross‐coupling correction) is a significant improvement over existing beam and spring‐type sea gravimeters such as the GSS-2. A gravity survey over the Wallops Island test range together with the results of subsequent cruises allow evaluation of the precision, accuracy, and capabilities of the new system. Over the test range, the BGM-3 data were compared directly to data obtained by a GSS-2 meter onboard R/V Conrad. The rms discrepancy between free‐air gravity anomaly values at intersecting ship tracks of R/V Conrad was ±0.38 mGal for BGM-3 compared to ±1.60 mGal for the GSS-2. Moreover, BGM-3’s platform recovered from abrupt changes in ship’s heading more rapidly than did the platform of GSS-2. The principal factor limiting the accuracy of sea gravity data is navigation. Over the test range, where navigation was by Loran C and transit satellite, a two‐step filtering of the ship’s velocity and position was required to obtain an optimal Eötvös correction. A spectral analysis of 1 minute values of the Eötvös correction and the reduced free‐air gravity anomaly determined the filter characteristics. To minimize the coherence between the Eötvös and free‐air anomaly, it was necessary to prefilter the ship’s position and velocity. Using this procedure, reduced free‐air gravity anomalies with wavelengths as small as a few kilometers can be resolved.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3