Interpretation of magnetic anomalies due to dikes: The complex gradient method

Author:

Rao D. Atchuta1,Babu H. V. Ram1,Narayan P. V. Sanker1

Affiliation:

1. National Geophysical Research Institute, Uppal Road, Hyderabad 500 007, India

Abstract

A method to interpret the magnetic anomaly due to a dipping dike using the resultant of the horizontal and vertical gradients of the anomaly is suggested. The resultant of both the gradients is a vector quantity and is defined as the “complex gradient.” A few characteristic points defined on the amplitude and phase plots of the complex gradient are used to solve for the parameters of the dike. For a dike uniformly magnetized in the earth’s magnetic field, the amplitude plot is independent of [Formula: see text], the index parameter, which depends upon the strike and dip of the dike and the magnetic inclination of the area. The phase plot of the complex gradient is an antisymmetric curve with an offset value equal to [Formula: see text]. For a dike whose half‐width is greater than its depth of burial, two maxima at equal distances on either side of a minimum value appear on the amplitude plot. For a dike whose half‐width is equal to or less than its depth of burial, the amplitude plot is a bell‐shaped symmetric curve with its maximum appearing directly over the origin. In the case of a thin dike, the amplitude function falls off to half its maximum value at the same point on the abscissa where the phase function reaches, i.e., [Formula: see text]. A combined analysis of the amplitude and phase plots of the complex gradient yields all the parameters of the dike. The method is applicable for the magnetic anomaly in either the total, vertical, or horizontal field. A field example is included to show the applicability of the method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3