Wavefield separation using irreversible-migration filtering

Author:

Li Chao1ORCID,Zhang Jinhai2ORCID

Affiliation:

1. Chinese Academy of Sciences, Institute of Geology and Geophysics, Key Laboratory of Earth and Planetary Physics, Beijing 100029, China; Chinese Academy of Sciences, Innovation Academy of Earth Science, Beijing 100029, China; and University of Chinese Academy of Sciences, College of Earth and Planetary Sciences, Beijing 100049, China.

2. Chinese Academy of Sciences, Institute of Geology and Geophysics, Key Laboratory of Earth and Planetary Physics, Beijing 100029, China and Chinese Academy of Sciences, Innovation Academy of Earth Science, Beijing 100029, China. (corresponding author)

Abstract

Wavefield separation is important for eliminating unwanted components of seismic data while retaining preferred components therein; however, there have been difficulties with using traditional methods to select a proper muting window in the transformed domain. A narrow muting window can separate different components well, but it causes visible artifacts due to sudden truncations (e.g., the Gibbs phenomenon), whereas a wide muting window would, on the other hand, leave unwanted components. We have adopted separating the wavefield based on its irreversibility after migration and demigration. One-way wave-equation migration would automatically damp high-slope components in the evanescent region while accurately handling the other components. Thus, the migration velocity can be tuned to naturally trap a given range of high-slope components into the evanescent region in the migrated domain, which would be irreversible after demigration. In contrast, the other components (i.e., those outside the evanescent region) can be recovered after demigration. Our method achieves perfect muting by taking advantage of migration and demigration, and thus it avoids the manual operation of setting a muting window. As a result, our method is free of muting artifacts. We conduct numerical experiments with synthetic and field data, and the results verify the excellent performance of our method for several different kinds of wavefield separation, including linear event separation, structural noise elimination, diffraction-reflection separation, and vertical seismic profile wavefield separation. Our method integrates noise reduction and the wavefield separation, and thus it can reduce the computational cost of using different data processing schemes and avoid the related potential error accumulation.

Funder

National Natural Science Foundation of China

the Key Research Program of the Chinese Academy of Sciences

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3