Decoupling approximation of P- and S-wave phase velocities in orthorhombic media

Author:

Li Bowen1,Stovas Alexey2

Affiliation:

1. Norwegian University of Science and Technology, Department of Geoscience and Petroleum, S.P. Andersens veg 15a, NO-7491 Trondheim, Norway and Jilin University, College of Geo-exploration Science and Technology, 130061 Changchun, China..

2. Norwegian University of Science and Technology, Department of Geoscience and Petroleum, S.P. Andersens veg 15a, NO-7491 Trondheim, Norway..

Abstract

Characterizing the kinematics of seismic waves in elastic orthorhombic media involves nine independent parameters. All wave modes, P-, S1-, and S2-waves, are intrinsically coupled. Since the P-wave propagation in orthorhombic media is weakly dependent on the three S-wave velocity parameters, they are set to zero under the acoustic assumption. The number of parameters required for the corresponding acoustic wave equation is thus reduced from nine to six, which is very practical for the inversion algorithm. However, the acoustic wavefields generated by the finite-difference scheme suffer from two types of S-wave artifacts, which may result in noticeable numerical dispersion and even instability issues. Avoiding such artifacts requires a class of spectral methods based on the low-rank decomposition. To implement a six-parameter pure P-wave approximation in orthorhombic media, we develop a novel phase velocity approximation approach from the perspective of decoupling P- and S-waves. In the exact P-wave phase velocity expression, we find that the two algebraic expressions related to the S1- and S2-wave phase velocities play a negligible role. After replacing these two algebraic expressions with the designed constant and variable respectively, the exact P-wave phase velocity expression is greatly simplified and naturally decoupled from the characteristic equation. Similarly, the number of required parameters is reduced from nine to six. We also derive an approximate S-wave phase velocity equation, which supports the coupled S1- and S2-waves and involves nine independent parameters. Error analyses based on several orthorhombic models confirm the reasonable and stable accuracy performance of the proposed phase velocity approximation. We further derive the approximate dispersion relations for the P-wave and the S-wave system in orthorhombic media. Numerical experiments demonstrate that the corresponding P- and S-wavefields are free of artifacts and exhibit good accuracy and stability.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3