Analysis of the viscoelasticity in coal based on the fractal theory

Author:

Zhao TaiLang1ORCID,Zou GuanGui2ORCID,Peng SuPing3ORCID,Zeng Hu4ORCID,Gong Fei4ORCID,Yin YaJun5ORCID

Affiliation:

1. China University of Mining and Technology (Beijing), State Key Laboratory of Coal Resources and Safety Mining, Beijing, China and China University of Mining and Technology (Beijing), College of Geoscience and Surveying Engineering, Beijing, China.

2. China University of Mining and Technology (Beijing), State Key Laboratory of Coal Resources and Safety Mining, Beijing, China and China University of Mining and Technology (Beijing), College of Geoscience and Surveying Engineering, Beijing, China. (corresponding author)

3. China University of Mining and Technology (Beijing), State Key Laboratory of Coal Resources and Safety Mining, Beijing, China.

4. China University of Mining and Technology (Beijing), College of Geoscience and Surveying Engineering, Beijing, China.

5. Tsinghua University, Department of Engineering Mechanics, Beijing, China.

Abstract

Coal is a complex viscoelastic porous medium with fractal characteristics at different scales. To model the macroscale structure of coal, a fractal viscoelastic model is established, and the P-wave velocity dispersion and attenuation characteristics are discussed based on the complex modulus derived from this model. The numerical simulation results indicate that the fractional order [Formula: see text] and relaxation time [Formula: see text] greatly affect the P-wave velocity dispersion and attenuation. The fractal viscoelastic model indicates a full-band velocity dispersion between 1 Hz and 104 Hz. Meanwhile, the P-wave velocity has a weaker dispersion with the fractal viscoelastic model than with the Kelvin-Voigt model and Zener model between 1 Hz and 104 Hz for the same relaxation time and elastic modulus, but the velocity at 1 Hz based on the fractal viscoelastic model is higher with the Kelvin-Voigt model and Zener model. Simultaneously, the velocities of five coal samples are tested, and the attenuation factor is calculated using a low-frequency system. The experimental results indicate a strong dispersion in coal in the range of 10–250 Hz. The classic Kelvin-Voigt model and Zener model cannot describe the dispersion characteristics of coal, but the fractal viscoelastic model can describe them well by using the appropriate fractional order and relaxation time.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3