Regularization of anisotropic full-waveform inversion with multiple parameters by adversarial neural networks

Author:

Yao Jiashun1ORCID,Warner Michael1ORCID,Wang Yanghua2ORCID

Affiliation:

1. Imperial College London, Centre for Reservoir Geophysics, Resource Geophysics Academy, London SW7 2BP, UK.

2. Imperial College London, Centre for Reservoir Geophysics, Resource Geophysics Academy, London SW7 2BP, UK. (corresponding author)

Abstract

The anisotropic full-waveform inversion (FWI) is a seismic inverse problem for multiple parameters, which aims to simultaneously reconstruct the vertical velocity and the anisotropic parameters of the earth’s subsurface. This multiparameter inverse problem suffers from two issues. First, the objective function of the data fitting is less sensitive to the anisotropic parameters. Second, the crosstalk effect among the different parameters worsens the model update in the iterative inversion. We have developed a method that statistically regularizes the anisotropic FWI using Wasserstein adversarial networks, by penalizing the Wasserstein distance between the distribution of the current model parameters and that of the parameters at the borehole locations. The regularizer can mitigate the issues of anisotropic FWI with multiple parameters and therefore it also can be applied to other inverse problems with multiple parameters.

Funder

Resource Geophysics Academy

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3