Elastic least-squares reverse time migration of steeply dipping structures using prismatic reflections

Author:

Wu Zheng1ORCID,Liu Yuzhu2ORCID,Yang Jizhong3ORCID

Affiliation:

1. Tongji University, School of Ocean and Earth Science, Shanghai 20092, China.

2. Tongji University, School of Ocean and Earth Science, Shanghai 20092, China and Tongji University, State Key Laboratory of Marine Geology, Shanghai 20092, China. (corresponding author)

3. Tongji University, State Key Laboratory of Marine Geology, Shanghai 20092, China. (corresponding author)

Abstract

The migration of prismatic reflections can be used to delineate steeply dipping structures, which is crucial for oil and gas exploration and production. Elastic least-squares reverse time migration (ELSRTM), which considers the effects of elastic wave propagation, can be used to obtain reasonable subsurface reflectivity estimations and interpret multicomponent seismic data. In most cases, we can only obtain a smooth migration model. Thus, conventional ELSRTM, which is based on the first-order Born approximation, considers only primary reflections and cannot resolve steeply dipping structures. To address this issue, we develop an ELSRTM framework, called Pris-ELSRTM, which can jointly image primary and prismatic reflections in multicomponent seismic data. When Pris-ELSRTM is directly applied to multicomponent records, near-vertical structures can be resolved. However, the application of imaging conditions established for prismatic reflections to primary reflections destabilizes the process and leads to severe contamination of the results. Therefore, we further improve the Pris-ELSRTM framework by separating prismatic reflections from recorded multicomponent data. By removing artificial imaging conditions from the normal equation, primary and prismatic reflections can be imaged based on unique imaging conditions. The results of synthetic tests and field data applications demonstrate that the improved Pris-ELSRTM framework produces high-quality images of steeply dipping P- and S-wave velocity structures. However, it is difficult to delineate steep density structures because of the insensitivity of the density to prismatic reflections.

Funder

National Key RD Program of China

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3