True‐amplitude weight functions in 3D limited‐aperture migration revisited

Author:

Sun Jianguo1

Affiliation:

1. Jilin University (Chao Yang District), Department of Geophysics, Laboratory for Wave Theory and Imaging Technology, 6 Ximinzhu St., Changchun 130026, China.

Abstract

The true‐amplitude weight function in 3D limited‐aperture migration is obtained by extending its formula at an actual reflection point to any arbitrary subsurface point. This implies that the recorded seismic signal is a delta impulse. When the weight function is used in depth migration, it results in an amplitude distortion depending on the vertical distance from the target reflector. This distortion exists even if the correct velocity model is used. If the image point lies at a depth shallower than the half‐offset, the distortion cannot be ignored, even for a spatial wavelet having a short length. Using paraxial ray theory, I find a formula for the true‐amplitude weight function causing no amplitude distortion, under the condition that the earth's surface is smoothly curved. However, the formula is reflector dependent. As a result, amplitude distortion, in parallel with pulse distortion, is an intrinsic effect in depth migration, and true‐amplitude migration without amplitude distortion is possible only when the position of the target reflector is known. If this is the case, true‐amplitude migration without amplitude distortion can be realized by filtering the output of a simple unweighted diffraction stack with the weight function presented here. Also, using Taylor expansions with respect to the vertical, I derive an alternative formula for the true‐amplitude weight function that causes no amplitude distortion. Starting from this formula, I show that the previously published reflector‐independent true‐amplitude weight function is a zero‐order approximation to the one given here.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3