Organic maturity, elastic properties, and textural characteristics of self resourcing reservoirs

Author:

Zargari Saeed1,Prasad Manika1,Mba Kenechukwu C.2,Mattson Earl D.3

Affiliation:

1. Colorado School of Mines, Golden, Colorado, USA..

2. Exxon Mobil, Mobil Producing Nigeria, Lagos, Nigeria..

3. Idaho National Laboratory, Idaho Falls, Idaho, USA..

Abstract

Organic-rich rocks have long been recognized as source rocks for clastic reservoirs, but more recently they have gained importance as reservoirs. However, the processes of kerogen maturation and hydrocarbon transport and storage are still poorly understood. Some empirical relations have been developed to relate the increase in elastic modulus with increasing maturity. A systematic study of the cause for this increase in elastic modulus is still lacking, and information about seismic and mechanical properties of kerogen and its alteration products is scarce. Consequently, any rock models must rely on anecdotal or extrapolated data about various types of kerogen. Our experiments address this paucity of data by grain-scale modulus measurements coupled with careful field emission scanning electron microscopy (FESEM) microstructural assessments on organic rich Bakken formation shale samples with a range of maturities. Carefully acquired and detailed FESEM images help to understand the microstructural controls on the reduced (nanoindentation) Young’s modulus of minerals, clay particles, and kerogen matter with maturity in naturally matured shales. Using hydrous pyrolysis, we further investigate the cause for change in modulus with maturity and the mobility of the pyrolized organic matter. In naturally matured shale samples, we find a direct relationship between the reduced Young’s modulus and the total organic content or hydrogen index. Significant lowering of Young’s modulus is observed after hydrous pyrolysis due to bitumen generation. We measured modulus of the extruded bitumen to be less than 2 GPa. The presence of bitumen comingled with the organic matter also reduces its modulus, in excess of 30%. These results are critical to help understand how organic-rich sediments evolve with burial and maturation. The modulus measurements can be used for modeling modulus variations during maturation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3