Coupling relationship between current in-situ stress and natural fractures of continental tight sandstone oil reservoirs

Author:

Cui Xinying1,Radwan Ahmed E.2ORCID

Affiliation:

1. Changzhou University, Changzhou, China.

2. Jagiellonian University, Institute of Geological Sciences, Faculty of Geography and Geology, Krakow, Poland and Gulf of Suez Petroleum Company, Exploration Department, Cairo, Egypt. (corresponding author)

Abstract

We have integrated rock mechanics and acoustic experiments, full-wave array acoustic testing, formation microscanner image logging, and hydraulic-fracturing data to evaluate the coupling relationship between current in-situ stress and natural fractures. We used the data of the Yanchang Formation in the DL block of the western Ordos Basin, China, as an example. Our results find that the Yanchang Formation mainly develops high-angle fractures and vertical fractures. Furthermore, the in-situ stress state of the target sandstone strata satisfies [Formula: see text]. Nearly vertical and high-angle fractures are formed in the environment when [Formula: see text] is the maximum principal stress. Therefore, the current in-situ stress state of the target layer matches the induced fractures (longitudinal tensile-induced fractures) and natural fractures. As the buried depth increases, the difference between the horizontal maximum and minimum stresses ([Formula: see text]) has a tendency to first decrease and then increase, and its conversion depth is approximately 2000 m. Natural fractures are not developed in the distributary bay (the lowest horizontal stress area) and the thick sand area in the middle of the main river channel (the largest horizontal stress area). Natural fractures are mainly developed on the two wings of the main channel, and their horizontal stress is approximately 2–4 MPa lower than the central part of the main channel. We determined a correlation between fractures and sedimentary facies, and we have an important reference value for improving the drilling success rate of tight oil reservoirs. Furthermore, our study provides insights into the prediction of fractures and sweet spots for further exploration and hydraulic fracturing activities in the studied area and elsewhere in continental tight sandstone reservoirs.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3