An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation

Author:

Komatitsch Dimitri1,Martin Roland1

Affiliation:

1. Université de Pau et des Pays de l’Adour, Laboratoire de Modélisation et d’Imagerie en Géosciences, CNRS UMR 5212 & INRIA Futurs Magique-3D, Pau, France. .

Abstract

The perfectly matched layer (PML) absorbing boundary condition has proven to be very efficient from a numerical point of view for the elastic wave equation to absorb both body waves with nongrazing incidence and surface waves. However, at grazing incidence the classical discrete PML method suffers from large spurious reflections that make it less efficient for instance in the case of very thin mesh slices, in the case of sources located close to the edge of the mesh, and/or in the case of receivers located at very large offset. We demonstrate how to improve the PML at grazing incidence for the differential seismic wave equation based on an unsplit convolution technique. The improved PML has a cost that is similar in terms of memory storage to that of the classical PML. We illustrate the efficiency of this improved convolutional PML based on numerical benchmarks using a finite-difference method on a thin mesh slice for an isotropic material and show that results are significantly improved compared with the classical PML technique. We also show that, as the classical PML, the convolutional technique is intrinsically unstable in the case of some anisotropic materials.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 617 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3