Improving adaptive subtraction in seismic multiple attenuation

Author:

Huo Shoudong12,Wang Yanghua12

Affiliation:

1. Formerly Imperial College London, Department of Earth Science and Engineering, Centre for Reservoir Geophysics, South Kensington, London, U. K.; presently Saudi Aramco, EXPEC Advanced Research Center, Geophysics Technology Team, Dhahran, Saudi Arabia. .

2. Imperial College London, Department of Earth Science and Engineering, Centre for Reservoir Geophysics, South Kensington, London, U. K. .

Abstract

In seismic multiple attenuation, once the multiple models have been built, the effectiveness of the processing depends on the subtraction step. Usually the primary energy is partially attenuated during the adaptive subtraction if an [Formula: see text]-norm matching filter is used to solve a least-squares problem. The expanded multichannel matching (EMCM) filter generally is effective, but conservative parameters adopted to preserve the primary could lead to some remaining multiples. We have managed to improve the multiple attenuation result through an iterative application of the EMCM filter to accumulate the effect of subtraction. A Butterworth-type masking filter based on the multiple model can be used to preserve most of the primary energy prior to subtraction, and then subtraction can be performed on the remaining part to better suppress the multiples without affecting the primaries. Meanwhile, subtraction can be performed according to the orders of the multiples, as a single subtraction window usually covers different-order multiples with different amplitudes. Theoretical analyses, and synthetic and real seismic data set demonstrations, proved that a combination of these three strategies is effective in improving the adaptive subtraction during seismic multiple attenuation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3