Attribute-assisted characterization of basement faulting and the associated sedimentary sequence deformation in north-central Oklahoma

Author:

Firkins Max1ORCID,Kolawole Folarin1ORCID,Marfurt Kurt J.1ORCID,Carpenter Brett M.1

Affiliation:

1. University of Oklahoma, School of Geosciences, RM 710, Sarkeys Energy Center, 100 East Boyd Street, Norman, Oklahoma 73019-0390, USA.(corresponding author); .

Abstract

Patterns of recent seismogenic fault reactivation in the granitic basement of north-central Oklahoma necessitate an understanding of the structural characteristics of the inherited basement-rooted faults. Here, we focus on the Nemaha Uplift & Fault Zone (NFZ) and the surrounding areas, within which we analyze the top-basement and intrabasement structures in eight poststack time-migrated 3D seismic reflection data sets. Overall, our results reveal 115 fault traces at the top of the Precambrian basement with sub-vertical dips, and dominant trends of west-northwest–east-southeast, northeast–southwest, and north–south. We observe that proximal to the NFZ, faults dominantly strike north–south, are fewer (<10), and have the lowest areal density and intensity, while displaying the largest maximum vertical separation. However, farther away (>30 km) from the NFZ, faults exhibit predominantly northeast–southwest trends, fault areal density and intensity increases, and maximum vertical separation decreases steadily. Of the analyzed faults, approximately 49% are confined to the basement (intrabasement), ~28% terminate within the Arbuckle Group, and approximately 23% transect units above the Arbuckle Group. These observations suggest that (1) proximal to the NFZ, deformation is dominantly accommodated along a few but longer fault segments, most of the mapped faults cut into the sedimentary rocks, and most of the through-going faults propagate farther up-section above the Arbuckle Group; and (2) with distance away from the NFZ, deformation is diffuse and distributed across relatively shorter fault segments, and most basement faults do not extend into the sedimentary cover. The existence of through-going faults suggests the potential for spatially pervasive fluid movement along faults. Further, observations reveal pervasive, subhorizontal intrabasement reflectors (igneous sills) that terminate at the basement-sediment interface. Results have direct implications for wastewater injection and seismicity in north-central Oklahoma and southern Kansas. Additionally, they provide insight into the characteristics of basement-rooted structures around the NFZ region and suggest a means by which to characterize basement structures where seismic data are available.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3