Characteristics and genesis of reef-bank complexes in deep shelf facies: A case study of the Middle-Late Jurassic in the northern Amu Darya Basin, Central Asia

Author:

Zhang Liangjie1ORCID,Yu Bingsong2ORCID,Wang Hongjun3ORCID,Jiang Lingzhi3,Gong Xinglin4,Xing Yuzhong3ORCID,Li Hongxi5,Li Ming3ORCID,Shi Haidong3,Chen Pengyu3

Affiliation:

1. China University of Geosciences (Beijing), School of Earth Sciences and Resources, Beijing, China and CNPC, Research Institute of Petroleum Exploration and Development, Beijing, China. (corresponding author)

2. China University of Geosciences (Beijing), School of Earth Sciences and Resources, Beijing, China.

3. CNPC, Research Institute of Petroleum Exploration and Development, Beijing, China.

4. CNPC (Turkmenistan) Amu Darya River Gas Company, Beijing, China.

5. Geological Exploration and Development Research Institute of CNPC Chuanqing Drilling Engineering Company Limited, Chengdu, China.

Abstract

A large-rimmed carbonate platform was developed in the Amu Darya Basin during the Middle-Late Jurassic Callovian-Oxfordian period. What distinguishes it from typical carbonate platforms is that a series of reef-bank complexes had extensively developed in the deep shelf depositional zone of the basin. However, only a few studies have reported on the classification, characteristics, and genesis of these reef-bank complexes in relatively deep water, greatly limiting the development of deep-water carbonate sedimentology. To address this issue, the types and the genesis of reef-bank complexes in the deep shelf environment have been clarified based on the systematic petrography, seismic sedimentology, and geomorphology study of the Callovian-Oxfordian carbonate rocks in the northern Amu Darya Basin during the Middle-Late Jurassic period. The results find that the reef-bank complexes are widely distributed in the deep shelf environment in the study area with laminar, reticulated, and zonal distributions. The reef-bank complexes include barrier-bonding reef-bank complexes, lime-mud mounds (LMMs), and granular shoals (GSs). The deep shelf environment can be further divided into an inner shelf, shelf margin, and shelf slope. The inner shelf and shelf margin have a relatively shallow water body and a strong sedimentary hydrodynamic force, mainly developing reticulated reef-bank complexes and laminar GSs, whereas the shelf slope mostly develops zonal LMM deposits in strips. The scale of the reef-bank complexes is mainly controlled by basement paleogeomorphology and water energy. Relatively high-energy reef-bank complex bodies are developed on the seaward side of the paleouplift limb with relatively turbulent hydrodynamic conditions, whereas low-energy LMMs are mostly developed on the high position of paleouplift and landward side. The obtained findings can deepen our understanding of relatively deep-water carbonate sedimentation and enrich the carbonate sedimentation theory.

Funder

Technology Project of CNPC

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3