Kantorovich-Rubinstein misfit for inverting gravity-gradient data by the level-set method

Author:

Huang Guanghui1ORCID,Zhang Xinming2,Qian Jianliang3ORCID

Affiliation:

1. Michigan State University, Department of Mathematics, East Lansing, Michigan 48824, USA..

2. Harbin Institute of Technology (Shenzhen), College of Science, Shenzhen, China..

3. Michigan State University, Department of Mathematics and Department of CMSE, East Lansing, Michigan 48824, USA.(corresponding author).

Abstract

We have developed a novel Kantorovich-Rubinstein (KR) norm-based misfit function to measure the mismatch between gravity-gradient data for the inverse gradiometry problem. Under the assumption that an anomalous mass body has an unknown compact support with a prescribed constant value of density contrast, we implicitly parameterize the unknown mass body by a level-set function. Because the geometry of an underlying anomalous mass body may experience various changes during inversion in terms of level-set evolution, the classic least-squares ([Formula: see text]-norm-based) and the [Formula: see text]-norm-based misfit functions for governing the level-set evolution may potentially induce local minima if an initial guess of the level-set function is far from that of the target model. The KR norm from the optimal transport theory computes the data misfit by comparing the modeled data and the measured data in a global manner, leading to better resolution of the differences between the inverted model and the target model. Combining the KR norm with the level-set method yields a new effective methodology that is not only able to mitigate local minima but is also robust against random noise for the inverse gradiometry problem. Numerical experiments further demonstrate that the new KR norm-based misfit function is able to recover deep dipping flanks of SEG/EAGE salt models even at extremely low signal-to-noise ratios. The new methodology can be readily applied to gravity and magnetic data as well.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3