Parsimonious migration of 3-C 3D VSP data

Author:

Agnihotri Yogesh1,McMechan George A.1

Affiliation:

1. The University of Texas at Dallas, Center for Lithospheric Studies, Richardson, Texas. .

Abstract

Conventional Kirchhoff migration can be made much faster by a priori calculation of wave arrival directions, and tracing rays back only along the measured directions; this is known as parsimonious migration. For surface seismic data, where acquisition with 2D arrays is common, the wave arrival directions can be measured by using local slant stacking to calculate the two horizontal slowness components. The vertical slowness is then deduced by using the dispersion relation. For vertical seismic profile (VSP) data, where multiline acquisition is not possible, only the vertical component of the slowness vector can be measured, which is insufficient to constrain the wave arrival direction. We overcome this limitation for three-component VSP data by polarization analysis of the incident waves. Polar and azimuth anglesare calculated at the receivers by estimating the data covariance matrix and the vertical slowness, assuming isotropic media and linear polarization of both P- and S-waves. For P-waves, the data covariance matrix defines the polarization ellipsoid, which is then used to calculate the wave arrival direction. For S-waves, an additional step is required because the polarization is orthogonal to the propagation direction. Ray tracing along only the measured propagation directions eliminates the traditional traveltime table calculation, and enhances the efficiency of Kirchhoff migration of three-component VSP data. Distortions of the polarization caused by factors such as anisotropy are assumed to be corrected independently of the migration process described here. Synthetic examples for a flat reflector and for a salt flank model demonstrate the procedure and the image quality.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3