Characterization of mass transport deposits using seismic attributes: Upper Leonard Formation, Permian Basin

Author:

Bhatnagar Paritosh1,Verma Sumit1ORCID,Bianco Ron2ORCID

Affiliation:

1. UT Permian Basin, Department of Geosciences, Odessa, Texas, USA..

2. Fasken Oil and Ranch Ltd, Midland, Texas, USA..

Abstract

The Permian Basin is a structurally complex sedimentary basin with an extensive history of tectonic deformation. As the basin evolved through time, sediments dispersed into the basin floor from surrounding carbonate platforms leading to various mass movements. One such mass movement is observed on a 3D seismic survey in the Upper Leonard interval (Lower Permian) of the Midland Basin that is characteristic of a mass transport deposit (MTD). The 350 ft thick MTD mapped in the study area is 5 mi wide, extends up to 14 mi basinward, and covers only the translational and compressional regime of the mass movement. A unique sedimentary feature, unlike those observed previously, is mapped and interpreted as gravity spreading. MTDs have been extensively studied in the Delaware Basin of Permian-aged strata; however, only a few works have been published on the geomorphological expression of MTDs using seismic and seismic attributes to delineate the shape, size, and anatomy of this subsurface feature. The MTD in the study area exhibits an array of features including slide, slump, basal shear surface, and MTD grooves. In cross section, the MTD is characterized as chaotic with semitransparent reflectors terminating laterally against a coherent package of seismic facies, or the lateral wall. Sobel filter-based coherence, structural curvature, dip magnitude, and dip azimuth attributes are used to map thrust faults within the discontinuous MTD. Kinematic evidence provided by the Upper Spraberry isopach suggests that this MTD was sourced north of the Midland Basin and deposited on the basin floor fairway. Slope strata are interpreted from well-log analysis showing MTD as a mixture of carbonates and siliciclastics with a moderate to high resistivity response.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3