A UAV-based magnetic survey method to detect and identify orphaned oil and gas wells

Author:

Nikulin Alex1,de Smet Timothy S.1

Affiliation:

1. Binghamton University, Department of Geological Sciences and Environmental Studies, Binghamton, New York, USA..

Abstract

Recent advances in autonomous unmanned aerial vehicle (UAV) technology, along with successful efforts to miniaturize total field magnetometers, offer a unique opportunity to test low-cost UAV-mounted systems for wide-area high-resolution magnetic surveys. Modern UAV platforms capable of flying at low altitudes and collecting dense aerial surveys, coupled with sensitive and compact instruments, allow identification of anthropogenic targets previously identifiable only in ground magnetometer surveys. We present results of a proof-of-concept study focused on developing and field testing a UAV-based magnetometer system to detect and identify abandoned and unmarked oil and gas wells in an area of historical hydrocarbon exploration and development in New York state. Our results indicate that magnetic anomalies associated with metal casing of vertical wells are pronounced considerably above background levels both at the surface and up to 50 m above-ground elevation. We determine that a detection altitude of 40 m is optimal to avoid any canopy interference while recording magnetic data at the highest signal-to-noise ratio. This methodology makes rapid detection and identification of unmarked wells possible and, in turn, allows for future sustainable development of these areas.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3