Viterbi sparse spike detection

Author:

Brown Samuel P.1,Thorne Michael S.2

Affiliation:

1. Petroleum Geo-Services, Houston, Texas, USA and University of Utah, Department of Geology and Geophysics, Salt Lake City, Utah, USA..

2. University of Utah, Department of Geology and Geophysics, Salt Lake City, Utah, USA..

Abstract

Accurate interpretation of seismic traveltimes and amplitudes in the exploration and global scales is complicated by the band-limited nature of seismic data. We discovered a stochastic method to reduce a seismic waveform into a most probable constituent spike train. Model waveforms were constructed from a set of candidate spike trains convolved with a source wavelet estimate. For each model waveform, a profile hidden Markov model (HMM) was constructed to represent the waveform as a stochastic generative model with a linear topology corresponding to a sequence of samples. Each match state in the HMM represented a sample in the model waveform, in which the amplitude was represented by a Gaussian distribution. Insert and delete states allowed the underlying source wavelet to dilate or contract, accounting for nonstationarity in the seismic data and errors in the source wavelet estimate. The Gaussian distribution characterizing each sample’s amplitude accounted for random noise. The Viterbi algorithm was employed to simultaneously find the optimal nonlinear alignment between a model waveform and the seismic data and to assign a score to each candidate spike train. The most probable traveltimes and amplitudes were inferred from the alignments of the highest scoring models. The method required no implicit assumptions regarding the distribution of traveltimes and amplitudes; however, in practice, the solution set may be limited to mitigate the nonuniqueness of solutions and to reduce the computational effort. Our analyses found that the method can resolve closely spaced arrivals below traditional resolution limits and that traveltime estimates are robust in the presence of random noise and source wavelet errors. The method was particularly well suited to fine-scale interpretation problems such as thin bed interpretation, tying seismic images to well logs, and the analysis of anomalous waveforms in global seismology.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference18 articles.

1. 3-D Seismic Interpretation

2. Clapp, R. G., 2008, Lloyd and Viterbi for QC and auto-picking: Stanford Exploration Project, SEP-134.

3. Biological Sequence Analysis

4. Eddy, S. R., 1995, Multiple alignment using hidden Markov models: in Rawlings, C. J., ed. Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology: AAAI Press, 114–120.

5. Heimer, A., I. Cohen, and A. A. Vassiliou, 2007, Dynamic programming for multichannel blind seismic deconvolution: 77th Annual International Meeting, SEG, Expanded Abstracts, 1845–1849.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3