Particle swarm optimization: A new tool to invert geophysical data

Author:

Shaw Ranjit1,Srivastava Shalivahan1

Affiliation:

1. Indian School of Mines, Department of Applied Geophysics, Dhanbad Jharkhand, India. .

Abstract

Particle swarm optimization (PSO) is a global optimization strategy that simulates the social behavior observed in a flock (swarm) of birds searching for food. A simple search strategy in PSO guides the algorithm toward the best solution through constant updating of the cognitive knowledge and social behavior of the particles in the swarm. To evaluate the applicability of PSO to inversion of geophysical data, we inverted three noise-corrupted synthetic sounding data sets over a multilayered 1D earth model by using DC, induced polarization (IP), and magnetotelluric (MT) methods. The results show that acceptable solutions can be obtained with a swarm of about 300 particles and that convergence occurs in less than 100 iterations. The time required to execute a PSO algorithm is comparable to that of a genetic algorithm (GA). Similarly, the models estimated from PSO and GA are close to the true solutions. Whereas a ridge regression (RR) algorithm converges in four to eight iterations, it yields satisfactory results only when the initial model is very close to the true model. Models estimated from PSO explain observed, vertical electric sounding (VES) and MT data, from Bhiwani district, Haryana, India, and the Chottanagpur gneissic complex, Dhanbad, India. The results are consistent with RR and GA inversions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3