An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media

Author:

Martin Roland123,Komatitsch Dimitri123,Ezziani Abdelâziz123

Affiliation:

1. Université de Pau et des Pays de l’Adour, Laboratoire de Modélisation et d’Imagerie en Géosciences: CNRS and INRIA Magique-3D, Pau Cedex, France. .

2. Also at Institut Universitaire de France, Paris, France. .

3. Université de Pau et des Pays de l’Adour, Laboratoire de Mathématiques Appliquées: CNRS and INRIA Magique-3D, Pau Cedex, France. .

Abstract

The perfectly matched layer (PML) absorbing technique has become popular in numerical modeling in elastic or poroelastic media because of its efficiency in absorbing waves at nongrazing incidence. However, after numerical discretization, at grazing incidence, large spurious oscillations are sent back from the PML into the main domain. The PML then becomes less efficient when sources are located close to the edge of the truncated physical domain under study, for thin slices or for receivers located at a large offset. We develop a PML improved at grazing incidence for the poroelastic wave equation based on an unsplit convolutional formulation of the equation as a first-order system in velocity and stress. We show its efficiency for both nondissipative and dissipative Biot porous models based on a fourth-order staggered finite-difference method used in a thin mesh slice. The results obtained are improved significantly compared with those obtained with the classical PML.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3