Crosswell monitoring using virtual sources and horizontal wells

Author:

Byun Joongmoo1,Yu Jeongmin1,Seol Soon Jee1

Affiliation:

1. Hanyang University, Department of Natural Resources and Geoenvironmental Engineering, Seoul, Korea.

Abstract

Time-lapse crosswell seismic provides an efficient way to monitor the migration of a [Formula: see text] plume or its leakage after [Formula: see text] injection into a geologic formation. Recently, crosswell seismic has become a powerful tool for monitoring underground variations, using the concept of a virtual source, with virtual sources positioned at the receivers installed in the well and thus the positions of sources and receivers can be invariant during monitoring. However, time-lapse crosswell seismic using vertical wells and virtual sources has difficulty in describing the front of a [Formula: see text] plume, which usually is parallel to the vertical wells, and in obtaining sufficient ray coverage for the first-arrival tomography. These problems arise because of the theoretical downward-illumination-directivity limitation of the virtual source. We have developed an effective monitoring method that uses virtual sources and two horizontal wells: one above and one below the [Formula: see text]sequestration reservoir. In our method, we redatum the traces that are recorded at geophones in horizontal wells from sources on the surface. The redatumed traces then become virtual traces recorded at geophones in the lower well and sent from virtual sources at the positions of the geophones in the upper well. The geometry of our method has advantages for locating the front of the [Formula: see text] plume, which is normal to the horizontal wells, compared with either real or virtual sources. The method also is advantageous in acquiring full ray coverage between the wells, and that coverage is superior to coverage acquired using vertical crosswell seismic with virtual sources. In addition, we can avoid problems related to any potential change in the medium above the reservoir and in the source and receiver positions. The results of applying our method to synthetic data that simulate [Formula: see text]-sequestration monitoring show that the front of a [Formula: see text] plume in the reservoir is depicted accurately in a velocity tomogram. The new method also can be used to monitor a reservoir during production of heavy oil.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference14 articles.

1. The virtual source method: Theory and case study

2. 77th Annual International Meeting;Bakulin A.,2007

3. Butler, R. M. , 1991, The recovery of oil and bitumen: Princeton Hall.

4. Computerized geophysical tomography

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3