Affiliation:
1. Schlumberger‐Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108
2. GECO Geophysical Inc., 1325 S. Dairy Ashford, Houston, Texas 77077
Abstract
Occasionally, seismic data contain transient noise that can range from being a nuisance to becoming intolerable when several seismic vessels try simultaneously to collect data in an area. The traditional approach to solving this problem has been to allocate time slots to the different acquisition crews; the procedure, although effective, is very expensive. In this paper a statistical method called “trimmed mean stack” is evaluated as a tool for reducing the detrimental effects of noise from interfering seismic crews. Synthetic data, as well as field data, are used to illustrate the efficacy of the technique. Although a conventional stack gives a marginally better signal‐to‐noise ratio (S/N) for data without interference noise, typical usage of the trimmed mean stack gives a reduced S/N equivalent to a fold reduction of about 1 or 2 percent. On the other hand, for a data set containing high‐energy transient noise, trimming produces stacked sections without visible high‐amplitude contaminating energy. Equivalent sections produced with conventional processing techniques would be totally unacceptable. The application of a trimming procedure could mean a significant reduction in the costs of data acquisition by allowing several seismic crews to work simultaneously.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献