A review of some amplitude-based seismic geometric attributes and their applications

Author:

Verma Sumit1ORCID,Chopra Satinder2,Ha Thang3ORCID,Li Fangyu4ORCID

Affiliation:

1. University of Texas of the Permian Basin, Department of Geosciences, Odessa, Texas 79762, USA.(corresponding author).

2. SamiGeo, Calgary, Alberta T3L 1W3, Canada..

3. University of Oklahoma, Department of Geology and Geophysics, Norman, Oklahoma 73069, USA..

4. Beijing University of Technology, Ministry of Education, Engineering Research Center of Digital Community, Beijing Laboratory for Urban Mass Transit, Beijing Key Laboratory of Computational Intelligence and Intelligent System, and Faculty of Information Technology, Beijing 100124, China..

Abstract

Seismic interpreters frequently use seismic geometric attributes, such as coherence, dip, curvature, and aberrancy for defining geologic features, including faults, channels, angular unconformities, etc. Some of the commonly used coherence attributes, such as cross correlation or energy-ratio similarity, are sensitive to only waveform shape changes, whereas the dip, curvature, and aberrancy attributes are based on changes in reflector dips. There is another category of seismic attributes, which includes attributes that are sensitive to amplitude values. Root-mean-square amplitude is one of the better-known amplitude-based attributes, whereas coherent energy, Sobel-filter similarity, normalized amplitude gradients, and amplitude curvature are among lesser-known amplitude-based attributes. We have computed not-so-common amplitude-based attributes on the Penobscot seismic survey from the Nova Scotia continental shelf consisting of the east coast of Canada, to bring out their interpretive value. We analyze seismic attributes at the level of the top of the Wyandot Formation that exhibits different geologic features, including a synthetic transfer zone with two primary faults and several secondary faults, polygonal faults associated with differential compaction, as well as fixtures related to basement-related faults. The application of the amplitude-based seismic attributes defines such features accurately. We take these applications forward by describing a situation in which some geologic features do not display any bending of reflectors but only exhibit changes in amplitude. One such example is the Cretaceous Cree Sand channels present in the same 3D seismic survey used for the previous applications. We compute amplitude curvature attributes and identify the channels, whereas these channels are not visible on the structural curvature display. In both of the applications, we observe that appropriate corendering not-so-common amplitude-based seismic attributes lead to convincing displays, which can be of immense aid in seismic interpretation and help define the different subsurface features with more clarity.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference16 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3