Numerical analysis of the 45‐degree finite‐difference equation for migration

Author:

Brysk Henry1

Affiliation:

1. Teledyne Exploration Co., P.O. Box 36269, Houston, TX 77036

Abstract

Migration is now most commonly performed by means of a finite‐difference solution of the wave equation in the space‐time domain (although alternative approaches such as f-k, Kirchhoff, finite‐difference in the space‐frequency domain have strong adherents). Claerbout’s derivation of the 15‐degree paraxial ray equation and its iteration to the 45‐degree equation are well documented. On the other hand, the transcription of the differential equation to a finite‐difference scheme has accreted with practical computing experience and is only mentioned piecemeal (when at all) in the literature. The full expression is reviewed here, as used in a typical production code. A numerical stability analysis of the von Neumann type is applied to the complete finite‐difference equation. It proves that the computer algorithm is stable, at least for the values of the computational parameters in normal use (the sensitivity to the values of these parameters is illustrated.) Thus, any perceived noisiness of migrated sections cannot be blamed on computational precision. The shortcomings are entirely caused by deficiencies in the analytic framework and the modeling.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3