Affiliation:
1. Earth Resources Laboratory, Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139
2. Earth Resources Laboratory, Massachusetts Institute of Technology
Abstract
The paraxial ray method is an economical way of computing approximate Green’s functions in heterogeneous media. The method uses information from the standard dynamic ray‐tracing method to extrapolate the seismic wave field at receivers in the neighborhood of a ray so that two‐point ray tracing is not required. Applicability conditions are explicit: they define where asymptotic (high‐frequency) methods are valid, and how far away from the ray the extrapolation remains accurate. Increasing the density of the ray fan improves accuracy but increases computation time. However, since reasonable accuracy is obtained with relatively few rays, the method yields results similar to the two‐point ray‐tracing method, but at a fraction of the cost. Examples of wave‐field extrapolation from a ray to neighboring receivers show that traveltime extrapolation is more accurate than amplitude extrapolation. Accuracy, robustness, and efficiency tests, comparing paraxial ray synthetic seismograms with acoustic finite‐difference and elastic discrete‐wavenumber synthetics, are judged very satisfactory.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献