Nonlinear integral equations for electromagnetic inverse problems

Author:

Gómez‐Treviño E.1

Affiliation:

1. Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico

Abstract

The scaling properties of Maxwell’s equations allow the existence of simple yet general nonlinear integral equations for electrical conductivity. These equations were developed in an attempt to reduce the generality of linearization to the exclusive scope of electromagnetic problems. The reduction is achieved when the principle of similitude for quasi‐static fields is imposed on linearized forms of the field equations. The combination leads to exact integral relations which represent a unifying framework for the general electromagnetic inverse problem. The equations are of the same form in both time and frequency domains and hold for all observations that scale as electric and magnetic fields do; direct current resistivity and magnetometric resistivity methods are considered as special cases. The kernel functions of the integral equations are closely related, through a normalization factor, to the Frechét kernels of the conventional equations obtained by linearization. Accordingly, the sensitivity functions play the role of weighting functions for electrical conductivity despite the nonlinear dependence of the model and the data. In terms of the integral equations, the inverse problem consists of extracting information about a distribution of conductivity from a given set of its spatial averages. The form of the new equations leads to the consideration of their numerical solution through an approximate knowledge of their kernel functions. The integral equation for magnetotelluric soundings illustrates this approach in a simple fashion.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3