Determination of the VS profile at a “noisy” industrial site via active and passive data: The critical role of Love waves and the opportunities of multicomponent group velocity analysis

Author:

Dal Moro Giancarlo1ORCID,Mazanec Martin2ORCID

Affiliation:

1. Academy of Sciences of the Czech Republic, Institute of Rock Structure and Mechanics, Prague, Czech Republic. (corresponding author)

2. Academy of Sciences of the Czech Republic, Institute of Rock Structure and Mechanics, Prague, Czech Republic and Charles University, Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Prague, Czech Republic.

Abstract

To define the procedures necessary to unambiguously define the subsurface model, a comprehensive set of active and passive seismic data was collected in an industrial area characterized by an extremely high level of background microtremors. Passive data are recorded to define three observables: the dispersion curve of the vertical component of Rayleigh waves via miniature array analysis of microtremors, the Love-wave dispersion curve via extended spatial autocorrelation, and the horizontal-to-vertical spectral ratio (HVSR). Active data used for the holistic analysis of surface waves are extracted from data recorded through a hybrid acquisition procedure accomplished with only two 3C geophones used to simultaneously define the HVSR at two points. Defined observables are combined according to three different approaches: the joint analysis of Rayleigh waves and HVSR, the joint analysis of Rayleigh and Love waves together with the HVSR, and the joint analysis of multicomponent group velocities together with the HVSR and Rayleigh-wave particle motion (RPM) curves. In agreement with the theory, data indicate that, in general, surface-wave modeling cannot be performed considering modal dispersion curves: dispersion obtained from passive data needs to be modeled considering the effective curve, whereas group velocity obtained from active data can be analyzed using the full velocity spectrum technique. Results indicate that joint inversion of Rayleigh-wave dispersion and HVSR does not necessarily ensure the correctness of the obtained S-wave velocity ([Formula: see text]) profile and that Love waves represent a key observable to fully constrain an unambiguous inversion procedure. However, the joint analysis of multicomponent group velocity spectra (from active multicomponent single-offset data) together with the HVSR and RPM curves is a further efficient way to obtain robust [Formula: see text] profiles through the active and passive data obtained by a single 3C geophone.

Funder

Akademie Věd České Republiky

Grantová Agentura, Univerzita Karlova

Publisher

Society of Exploration Geophysicists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3