Sequence-constrained multitask horizon tracking

Author:

Luo Yiliang1ORCID,Zhang Gulan2ORCID,Zhang Jianjun3,Li Yong1ORCID,Lin Yu3ORCID,Li Biao1,Liang Chenxi1ORCID,Li Lei4ORCID

Affiliation:

1. Southwest Petroleum University, School of Geoscience and Technology, Chengdu, China.

2. Southwest Petroleum University, School of Geoscience and Technology, Chengdu, China and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu, China. (corresponding author)

3. CNPC, BGP, Zhuozhou, China.

4. CNPC, R&D Center of BGP, Zhuozhou, China. (corresponding author)

Abstract

Deep learning-based automatic horizon tracking has achieved promising results but still faces serious cross-horizon phenomena. Therefore, based on multitask learning, seismic data characteristics, and the seismic horizon sequence (or position) relationship, we have developed a sequence-constrained multitask horizon tracking (SMHT) method for high-precision automatic horizon tracking. SMHT contains the horizon label automatic enrichment, the multitask horizon tracking network (MHTN), and the horizon sequence-constrained loss function. Horizon label automatic enrichment aims to automatically generate the upper and lower auxiliary horizon labels of the target horizon label, and then the horizon region labels corresponding to the auxiliary and target horizon labels for MHTN. MHTN contains the shared layer, the auxiliary task, the main task, and the horizon sequence-constrained horizon correction. In MHTN, the shared layer generates multiscale feature maps of the input seismic data. The auxiliary task uses the concept of object detection to extract the horizon region (or probability), and the main task extracts the high-precision horizon within the extracted horizon region. The horizon sequence-constrained horizon correction with the horizon sequence-constrained loss function aims to avoid the cross-horizon phenomenon and finally obtain precise horizon tracking results. Application of MHTN to two field 3D seismic data sets finds that SMHT performs well in automatic horizon tracking.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3