Normal moveout velocity ellipse in tilted orthorhombic media

Author:

Ivanov Yuriy1,Stovas Alexey1

Affiliation:

1. Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway..

Abstract

Normal moveout (NMO) velocity is a commonly used tool in the seismic industry nowadays. In 3D surveys, the variation of the NMO velocity in a horizontal plane is elliptic in shape for the anisotropy or heterogeneity of any strength (apart from a few exotic cases). The NMO ellipse is used for Dix-type inversion and can provide important information on the strength of anisotropy and the orientation of the vertical symmetry planes, which can correspond, for example, to fractures’ orientation and compliances. To describe a vertically fractured finely layered medium (the fracture is orthogonal to the layering), an anisotropy of orthorhombic symmetry is commonly used. In areas with complicated geology and stress distribution, the orientation of the orthorhombic symmetry planes can be considerably altered from the initial position. We have derived the exact equations for the NMO ellipse in an elastic tilted orthorhombic layer with an arbitrary orientation of the symmetry planes. We have evaluated pure and converted wave modes and determined that the influence of the orientation upon the NMO ellipse for all the waves is strong. We have considered acoustic and ellipsoidal orthorhombic approximations of the NMO ellipse equations, which we used to develop a numerical inversion scheme. We determined that in the most general case of arbitrary orientation of the orthorhombic symmetry planes, the inversion results are unreliable due to significant trade-offs between the parameters. We have evaluated S-wave features such as point singularities (slowness surfaces of the split S-waves cross) and triplications (due to concaveness of the individual S-wave mode slowness surface) and their influence on the NMO ellipse.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3