Beyond ray tomography: Wavepaths and Fresnel volumes

Author:

Vasco Don W.1,Peterson John E.1,Majer Ernest L.1

Affiliation:

1. Center for Computational Seismology, Lawrence Berkeley Laboratory, University of California, 1 Cyclotron Rd., Bldg. 50E, Berkeley, CA 94720

Abstract

Two techniques that account for the band‐limited nature of seismic data are incorporated into tomographic traveltime inversion schemes. The first technique, the wavepath algorithm, is based upon the wave equation, the Born approximation, and an adjoint method for computing Frechet derivatives. Computation of a single wavepath requires the forward propagation of the seismic wavefield, as well as the reverse propagation of a residual wavefield. The second technique, the Fresnel volume approach, is based upon the paraxial ray approximation. The Fresnel volume algorithm requires little more computation than does conventional ray tracing and an order of magnitude less computer time than our calculation of wavepaths. When the Fresnel volume sensitivity functions are normalized by the area of the Fresnel ellipse perpendicular to the ray, the sensitivity estimates are very similar to the wavepaths. In particular, there is heightened sensitivity to velocity structure near the source and receiver locations. The normalization by the Fresnel ellipse area is necessary to ensure ray theoretical results in the limit of infinite frequency. Tomographic inversion based upon wavepaths or Fresnel volumes is more appropriate when considering the arrival time of the peak of the initial pulse rather than the first‐arrival time. Furthermore, using the traveltime of the peak instead of the first‐arrival time reduces the bias of tomograms to high velocity anomalies. The raypath, wavepath, and Fresnel volume techniques were applied to a set of cross‐borehole traveltime observations gathered at the Grimsel Rock Laboratory. All methods imaged a low velocity fracture zone in the granitic site, in agreement with independent well information. Estimates of model parameter resolution are similar for the wavepath and Fresnel volume schemes. The source‐receiver regions are the most well resolved areas. However, the model parameter resolution computed using a conventional ray‐based formalism is more evenly distributed over the cross‐borehole area.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3