Integrated rock classification in the Wolfcamp Shale based on reservoir quality and anisotropic stress profile estimated from well logs

Author:

Aderibigbe Aderonke1ORCID,Chen Valdes Clotilde1,Heidari Zoya2

Affiliation:

1. Texas A&M University, College Station, Texas, USA..

2. The University of Texas at Austin, Austin, Texas, USA..

Abstract

Reliable rock classification is the key to identify target zones for successful hydraulic fracturing stimulation treatment in unconventional reservoirs such as organic-rich mudrocks. Such a rock classification scheme should take into account geologic attributes, petrophysical, and geomechanical properties (i.e., in situ stress gradient and elastic properties) to improve the likelihood of successful fracture treatment. However, conventional rock classification methods do not take into account stress gradients in the formation. We have developed a new rock classification technique that integrates four rock classification schemes based on the (1) geologic facies, (2) reservoir quality, (3) stress profile, and (4) completion quality. The techniques applied in these classification schemes include core description and thin section analysis, well-log-based depth-by-depth petrophysical and compositional characterization, and analysis of geomechanical measurements. Geomechanical analysis of core measurements and well logs provide a depth-by-depth assessment of minimum horizontal stress assuming vertical transverse isotropy in the formation. We have performed the geologic facies and reservoir quality classifications using an artificial neural network analysis, in which well logs and well-log-based estimates of the petrophysical and compositional properties were inputs to the network. Our technique was applied to a well located in the Wolfcamp Shale in the Delaware Basin. Based on the integrated rock classification results, we recommend the middle of the upper Wolfcamp and the bottom of the lower Wolfcamp depth intervals as the best candidates for fracture initiation and fracture containment zones, respectively. The selection of these zones was based on the reservoir quality and average minimum horizontal stress gradient calculated in these intervals. Our integrated rock classification technique can improve the planning and execution of completions design for hydraulic fracture treatments.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3