Mapping reservoirs based on resistivity and induced polarization derived from continuous 3D magnetotelluric profiling: Case study from Qaidam basin, China

Author:

He Zhanxiang1,Hu Zuzhi1,Luo Weifeng1,Wang Caifu1

Affiliation:

1. China National Petroleum Corporation, GME department BGP, Zhuozhou, China.

Abstract

In Sanfu, Qaidam basin, China, traditional geophysical methods have failed to find subtle hydrocarbon reservoirs. In an attempt to predict and delineate gas reservoirs, we used a type of magnetotelluric (MT) profiling called 3D continuous electromagnetic profiling (CEMP). Electric logs indicate that gas-bearing formations have high resistivity relative to nongas-bearing formations. Obvious resistivity anomalies derived from MT sounding curves are interpreted to come from gas-bearing formations; we observed no such anomalous resistivity away from gas-bearing reservoirs. For CEMP, five electric components were recorded at each station; the inline electric components of all stations were measured using dipoles placed end to end. Becausethe survey area was quite wide, we divided it into three rectangular blocks for data processing and inversion. After noise removal and static corrections, the data from each block were inverted with a 3D nonlinear conjugate-gradient inversion method to obtain the spatial distribution of resistivity. Using this resistivity, we created a 2D model, which we inverted to determine the induced polarization (IP) parameters. We found that a high-resistivity anomaly and high IP anomaly are two key indicators when predicting and delineating the location of gas-bearing reservoirs. In our case study, a known gas-bearing formation had a high-resistivity anomaly and a high IP anomaly. We identified two similar anomalous regions outside the known gas-bearing formations. As a result, two new prospects were determined as targets worth drilling.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3