Elastic imaging with exact wavefield extrapolation for application to ocean-bottom 4C seismic data

Author:

Ravasi Matteo1,Curtis Andrew1

Affiliation:

1. The University of Edinburgh, Grant Institute, School of GeoSciences, Edinburgh, UK..

Abstract

A central component of imaging methods is receiver-side wavefield backpropagation or extrapolation in which the wavefield from a physical source scattered at any point in the subsurface is estimated from data recorded by receivers located near or at the Earth’s surface. Elastic reverse-time migration usually accomplishes wavefield extrapolation by simultaneous reversed-time ‘injection’ of the particle displacements (or velocities) recorded at each receiver location into a wavefield modeling code. Here, we formulate an exact integral expression based on reciprocity theory that uses a combination of velocity-stress recordings and quadrupole-dipole backpropagating sources, rather than the commonly used approximate formula involving only particle velocity data and dipole backpropagating sources. The latter approximation results in two types of nonphysical waves in the scattered wavefield estimate: First, each arrival contained in the data is injected upward and downward rather than unidirectionally as in the true time-reversed experiment; second, all injected energy emits compressional and shear propagating modes in the model simulation (e.g., if a recorded P-wave is injected, both P and S propagating waves result). These artifacts vanish if the exact wavefield extrapolation integral is used. Finally, we show that such a formula is suitable for extrapolation of ocean-bottom 4C data: Due to the fluid-solid boundary conditions at the seabed, the data recorded in standard surveys are sufficient to perform backpropagation using the exact equations. Synthetic examples provide numerical evidence of the importance of correcting such errors.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3