An improved method for evaluating fracture density using pulsed neutron capture logging

Author:

Zhang Feng1ORCID,Xie Bing2ORCID,Chen Qian3ORCID,Zhang Xiaoyang4ORCID,ABuLaHai YiMula4ORCID,Lu Baoping5ORCID,Zhang Hui4ORCID,Fan Jilin4ORCID

Affiliation:

1. State Key Laboratory of Deep Oil and Gas, Qingdao, China and Laoshan Laboratory, Qingdao, China and China University of Petroleum, Qingdao, China. (corresponding author)

2. China University of Petroleum, Qingdao, China and China Petroleum & Chemical Corporation, Beijing, China.

3. Sinopec Matrix Corporation, Qingdao, China.

4. China University of Petroleum, Qingdao, China.

5. China National Logging Corporation, Xi’an, China.

Abstract

Fracture density is a critical fracture evaluation parameter for the optimization and production prediction of hydraulic fracturing models. Nonradioactive tracer (NRT) techniques have successfully used a quantitative fracture density method based on neutron-induced gamma rays from formation elements. Furthermore, fracture density can be calculated using the formation capture cross section before and after hydraulic fracturing based on pulsed neutron capture logging. However, the response sensitivity of the macroscopic scattering cross section to the fractures decreases when the fracture density is high due to the neutron self-shielding phenomenon. Therefore, an improved fracture density evaluation method is applied, which combines the macroscopic capture cross section and the neutron self-shielding correction factor. In the new method, the peak area of titanium from the captured gamma spectrum is used to obtain a neutron self-shielding correction factor to improve the sensitivity of fracture density determination. Furthermore, the response of capture cross-section variation to fracture density at various tagged proppant concentrations and formation backgrounds is investigated. The findings indicate that the tagged proppant concentration influences the detection limit of fracture density and the sensitivity of fracture density identification. The accurate calculation range of fracture density using the new method has been extended from 5% to 10% under the condition that the tagged proppant concentration is 0.2%. Meanwhile, whereas water salinity significantly impacts capture cross-section variation, the effects of porosity, lithology, and fluid type on capture cross-section variation are negligible. A simulated fracturing example demonstrates the method’s applicability in various measurement environments. The results show that fracture density and height are consistent with the model settings after correcting for water salinity, and the fracture density calculation error is less than 3%. Therefore, our evaluation method for fracture density corrected for the neutron self-shielding effect improves response sensitivity and fracture density calculation accuracy.

Funder

Scientific and Technological Innovation Projects of Laoshan Laboratory

National Natural Science Foundation of China

PetroChina

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3