Sparse seismic data regularization in both shot and trace domains using a residual block autoencoder based on the fast Fourier transform

Author:

Campi Alexandre L.1,Missagia Roseane Marchezi12

Affiliation:

1. Darcy Ribeiro Northern Rio de Janeiro State University, Petroleum Engineering and Exploration Laboratory (LENEP), Macae-RJ, Brazil..

2. Instituto Nacional de Ciência e Tecnologia – Geofísica do Petróleo (INCT - GP)

Abstract

The increasing use of sparse acquisitions in seismic data acquisition offers advantages in cost and time savings. However, it results in irregularly sampled seismic data, adversely impacting the quality of the final images. In this paper, we propose the ResFFT-CAE network, a convolutional neural network with residual blocks based on the Fourier transform. Incorporating residual blocks allows the network to extract both high- and low-frequency features from the seismic data. The high-frequency features capture detailed information, while the low-frequency features integrate the overall data structure, facilitating superior recovery of irregularly sampled seismic data in the trace and shot domains. We evaluated the performance of the ResFFT-CAE network on both synthetic and field data. On synthetic data, we compared the ResFFT-CAE network with the compressive sensing (CS) method utilizing the curvelet transform. For field data, we conducted comparisons with other neural networks, including the convolutional autoencoder (CAE) and U-Net. The results demonstrated that the ResFFT-CAE network consistently outperformed other approaches in all scenarios. It produced images of superior quality, characterized by lower residuals and reduced distortions. Furthermore, when evaluating model generalization, tests using models trained on synthetic data also exhibited promising results. In conclusion, the ResFFT-CAE network shows great promise as a highly efficient tool for the regularizing irregularly sampled seismic data. Its excellent performance suggests potential applications in the preconditioning of seismic data analysis and processing flows.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3