PINNslope: Seismic data interpolation and local slope estimation with physics informed neural networks

Author:

Brandolin Francesco1ORCID,Ravasi Matteo2ORCID,Alkhalifah Tariq2ORCID

Affiliation:

1. King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. (corresponding author)

2. King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Abstract

Interpolation of aliased seismic data constitutes a key step in a seismic processing workflow to obtain high-quality velocity models and seismic images. Building on the idea of describing seismic wavefields as a superposition of local plane waves, we propose to interpolate seismic data by using a physics informed neural network (PINN). In the proposed framework, two feed-forward neural networks are jointly trained using the local plane wave differential equation as well as the available data as two terms in the objective function: a primary network assisted by positional encoding is tasked with reconstructing the seismic data, whereas an auxiliary, smaller network estimates the associated local slopes. Results on synthetic and field data validate the effectiveness of the proposed method in handling aliased (coarsely sampled) data and data with large gaps. Our method compares favorably against a classic least-squares inversion approach regularized by the local plane-wave equation as well as a PINN-based approach with a single network and precomputed local slopes. We find that introducing a second network to estimate the local slopes, whereas at the same time interpolating the aliased data enhances the overall reconstruction capabilities and convergence behavior of the primary network. Moreover, an additional positional encoding layer embedded as the first layer of the wavefield network confers to the network the ability to converge faster, improving the accuracy of the data term.

Publisher

Society of Exploration Geophysicists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3