Integrating earthquake-based passive seismic methods in mineral exploration: Case study from the Gerolekas bauxite mining area, Greece

Author:

Polychronopoulou Katerina1ORCID,Malinowski Michal2ORCID,Cyz Marta3ORCID,Martakis Nikos4ORCID,Apostolopoulos George5ORCID,Draganov Deyan6ORCID

Affiliation:

1. National Technical University of Athens, School of Mining and Metallurgical Engineering, Department of Mining Engineering, Athens, Greece and Seismotech S.A., Athens, Greece. (corresponding author)

2. Polish Academy of Sciences, Institute of Geophysics, Warsaw, Poland and Geological Survey of Finland, Espoo, Finland.

3. Geological Survey of Finland, Espoo, Finland.

4. Seismotech S.A., Athens, Greece.

5. National Technical University of Athens, School of Mining and Metallurgical Engineering, Department of Mining Engineering, Athens, Greece.

6. Delft University of Technology, Department of Geoscience and Engineering, Delft, The Netherlands.

Abstract

As the global need for aluminum constantly rises, bauxite is considered to be a critical mineral, and the mining industry is in search of new and effective exploration solutions. In this context, we design and implement a purely earthquake-based passive seismic survey at the Gerolekas bauxite mining site in Greece. It is a very difficult exploration setting, characterized by rough topography, limited accessibility, and a very complex geotectonic regime. We gather a passive seismic data set consisting of four months of continuous recordings (May to August 2018) from 129 stand-alone 3C seismological stations. We then analyze this data set and extract 848 microearthquakes that will serve as sources for the application of local earthquake tomography (LET) and transient-source seismic interferometry (TSI) by autocorrelation. We apply LET to estimate the 3D P- and S-wave velocity models of the subsurface below the study area and TSI by autocorrelation to retrieve the zero-offset virtual reflection responses below each of the recording stations. The velocity models provide a relatively coarse image of a previously completely unexplored part of the mining concession, whereas the higher-resolution virtual reflection imaging illuminates in detail the different interfaces. We also reprocess three lines of legacy active seismic data that were shot in 2003, using the LET P-wave velocity model for depth migration, and confirm the improvement of seismic imaging. Finally, we evaluate the obtained results using well data and jointly interpret them, extracting useful information on the expected target depths and indicating that earthquake-based passive seismic techniques can be an innovative and environmentally friendly option for mineral exploration.

Funder

Horizon 2020 Framework Programme

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3