An in-depth study of U-net for seismic data conditioning: Multiple removal by moveout discrimination

Author:

Durall Ricard1ORCID,Ghanim Ammar2ORCID,Ettrich Norman2ORCID,Keuper Janis3ORCID

Affiliation:

1. Fraunhofer ITWM, Kaiserslautern, Germany. (corresponding author)

2. Fraunhofer ITWM, Kaiserslautern, Germany.

3. Fraunhofer ITWM, Kaiserslautern, Germany and Offenburg University, IMLA, Offenburg, Germany.

Abstract

Seismic processing often involves suppressing multiples that are an inherent component of collected seismic data. Elaborate multiple prediction and subtraction schemes such as surface-related multiple removal have become standard in industry workflows. In cases of limited spatial sampling, low signal-to-noise ratio, or conservative subtraction of the predicted multiples, the processed data frequently suffer from residual multiples. To tackle these artifacts in the postmigration domain, practitioners often rely on Radon transform-based algorithms. However, such traditional approaches are both time-consuming and parameter dependent, making them relatively complex. In this work, we present a deep learning-based alternative that provides competitive results, while reducing the complexity of its usage, and, hence simplifying its applicability. Our proposed model demonstrates excellent performance when applied to complex field data, despite it being exclusively trained on synthetic data. Furthermore, extensive experiments show that our method can preserve the inherent characteristics of the data, avoiding undesired oversmoothed results, while removing the multiples from seismic offset or angle gathers. Finally, we conduct an in-depth analysis of the model, where we pinpoint the effects of the main hyperparameters on real data inference, and we probabilistically assess its performance from a Bayesian perspective. In this study, we put particular emphasis on helping the user reveal the inner workings of the neural network and attempt to unbox the model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3